22-я хромосома человека. Хромосома 22
- 22-я хромосома человека. Хромосома 22
- Полиморфизм 22 хромосомы. Полиморфизм хромосом человека
- Что делают хромосомы. Значение слова «хромосома»
- Где находятся хромосомы. Факты о хромосомах человека – Это должен знать каждый – Vitaminov.net
- Строение хромосом. Особенности строения, химического состава хромосом и их значение
- Виды хромосом. Строение хромосом. Виды хромосом. Гетеро- и эухроматин
- Структура хромосом
22-я хромосома человека. Хромосома 22
ДНК этой хромосомы была секвенирована первой (декабрь 1999 г.), поэтому она и описана более полно. В хромосоме 22 остались нерасшифрованными всего несколько участков (менее 3 % длины ДНК). Она содержит около 500 генов и 134 псевдогена. Все эти генные последовательности вместе с внутригенными некодирующими районами (интронами) составляют всего 13 млн. п. н. Среди генов, присутствующей в хромосоме 22, имеются такие известные, как гены иммуноглобулинов, генные семейства, кодирующие различные ферменты, аполипопротеины и кристаллины. Подсчитано, что средний размер гена этой хромосомы — 19,2 тыс. п. н., хотя самый маленький состоит лишь из 1 тыс. п. н, а самый большой — из 583 тыс. п. н. Несколько генов содержат только один экзон, но, с другой стороны, имеется ген, состоящий аж из 54 экзонов. Величины экзонов варьируют от 8 до 7,6 тыс. п. н. Установлено, что два известных гена локализованы в протяженных интронах двух других генов («генные матрешки»). Что касается псевдогенов, на их долю приходится всего 204 тыс. п. н., причем большинство — это процессированные псевдогены, т. е. у них отсутствуют интроны. Установлено, что псевдогены хромосомы 22 в основном относятся к семействам иммуноглобулинов, кристаллинов, цитохромов и др. Обнаружен только один кластер, состоящий из 26 псевдогенов, рядом с центромерной областью хромосомы. Математическая обработка полученных данных показала, что еще определены не все гены и псевдогены хромосомы 22. Различные повторяющиеся последовательности, которые не кодируют белки, составляют 41,9 % этой хромосомы. Alu-повторы формируют блоки в районе центромеры и почти в центре длинного плеча. Для хромосомы 22 в настоящее время установлены функции примерно половины генов. Около 160 генов, расположенных на хромосоме 22, показывают значительную гомологию с генами мыши. Несмотря на свои небольшие размеры и малое число генов, ее патология установлена при некоторых генетических и онкологических заболеваниях. Сейчас известно 27 заболеваний, вызванных нарушениями в разных генах хромосомы 22 человека: от рака (миелоидная лейкемия) до предрасположенности к шизофрении и паркинсонизму, а также серьезных аномалий сердца и нервной системы. Известны многочисленные геномные и хромосомные мутации, связанные с этой хоромосомой. Так, трисомия (три вместо двух копий) хромосомы 22 вызывает синдром «кошачьего глаза» (колобома радужной оболочки), атрезию ануса, некоторые пороки развития и умственную отсталость. Трисомия хромосомы 22 — вторая по значению причина выкидышей у беременных. Выпадение (делеция) одного из районов длинного плеча (22q11.2) приводит либо к синдрому Ди Джорджи, который сопровождается аплазией тимуса, пороками сердца и аномалиями развития, несовместимыми с жизнью, либо, если делеция меньших размеров, к велокардиофациальному синдрому с характерными пороками сердца и крупных сосудов. При лейкозах и лимфомах также выявлены трисомии и моносомии, обмены участками (транслокации) различных хромосом и хромосомы 22. Самый известный пример — филадельфийская хромосома, образованная в результате транслокации между хромосомами 9 и 22. В солидных опухолях также достаточно часто обнаруживают различные транслокации с вовлечением хромосомы 22.
Полиморфизм 22 хромосомы. Полиморфизм хромосом человека
Хромосомный полиморфизм является одной из отличительных особенностей кариотипа человека. Под полиморфизмом понимают нормальную изменчивость хромосом набора, которая заключается в различиях между гомологичными хромосомами (гетероморфизм) по отдельным сегментам, районам и даже целым плечам. К полиморфным вариантам относят такие изменения хромосом, которые сохраняются в процессе онтогенеза, стабильно наследуются при митотическом делении клетки и передаются как простой менделев- ский признак от родителей к детям, не оказывая влияния на фенотип. Существование различных вариантов характерно практически для каждой хромосомы человека, а неограниченное число сочетаний таких вариантов приводит к уникальности кариотипа каждого человека, за исключением монозиготных близнецов.
Полиморфизм хромосом у человека крайне богат по своим проявлениям. Правила кариотипирования предусматривают учет полиморфных вариантов хромосом с помощью специальной системы символов (табл. 2.1). Как уже упоминалось, в широких пределах варьируют размеры С-блоков, особенно на хромосомах 1, 9, 15, 16, 19, 22 и Y. В популяции широко представлены варианты хромосом 9 и особенно 19, различия между которыми обусловлены не только размерами, но и расположением прицентромерного гетерохроматина — на длинном или коротком плече хромосомы, или одновременно на коротком и длинном плечах. Гетерохроматиновые блоки легко визуализируются практически при любом способе окраски хромосом, однако наиболее четко — при специальных методах (CBG и DA/ DAPI). Иногда гетерогенность прицентромерных районов, например, на хромосомах 3 и 4, выявляется лишь при люминесцентных вариантах окрашивания (QFQ, QFH, DAPI). Некоторые варианты хромосом, в частности, 17ps, наблюдаемые на окрашенных красителем Гимза препаратах, не будут зарегистрированы при окрашивании флуорохромами. Подробная информация о полиморфизме хромосом представлена в книге А. А. Прокофьевой-Бельговской , а также в прекрасно иллюстрированном атласе хромосом человека , которые с момента издания являются настольной книгой всех цитогенетиков человека.
Что делают хромосомы. Значение слова «хромосома»
- Хромосо́мы (др.-греч. χρῶμα — цвет и σῶμα — тело) — нуклеопротеидные структуры в ядре эукариотической клетки, в которых сосредоточена бо́льшая часть наследственной информации и которые предназначены для её хранения, реализации и передачи. Хромосомы чётко различимы в световом микроскопе только в период митотического или мейотического деления клетки. Набор всех хромосом клетки, называемый кариотипом, является видоспецифичным признаком, для которого характерен относительно низкий уровень индивидуальной изменчивости.
Хромосома эукариот образуется из единственной и чрезвычайно длинной молекулы ДНК, которая содержит линейную группу множества генов. Необходимыми функциональными элементами хромосомы эукариот являются центромера, теломеры и точки инициации репликации. Точки начала репликации (сайты инициации) и теломеры, находящиеся на концах хромосом, позволяют молекуле ДНК эффективно реплицироваться, тогда как в центромерах сестринские молекулы ДНК прикрепляются к митотическому веретену деления, что обеспечивает их точное расхождение по дочерним клеткам в митозе.
Исходно термин был предложен для обозначения структур, выявляемых в эукариотических клетках, но в последние десятилетия всё чаще говорят о бактериальных или вирусных хромосомах. Поэтому, по мнению Д. Е. Корякова и И. Ф. Жимулёва, более широким определением является определение хромосомы как структуры, которая содержит нуклеиновую кислоту и функция которой состоит в хранении, реализации и передаче наследственной информации. Хромосомы эукариот — это ДНК-содержащие структуры в ядре, митохондриях и пластидах. Хромосомы прокариот — это ДНК-содержащие структуры в клетке без ядра. Хромосомы вирусов — это молекула ДНК или РНК в составе капсида.
Где находятся хромосомы. Факты о хромосомах человека – Это должен знать каждый – Vitaminov.net
Хромосома – это содержащая ДНК нитевидная структура в клеточном ядре, которая несет в себе гены, единицы наследственности, расположенные в линейном порядке. У человека имеется 22 пары обычных хромосом и одна пара половых хромосом.
Помимо генов хромосомы также содержат регуляторные элементы и нуклеотидные последовательности. Они вмещают ДНК-связывающие белки, которые контролируют функции ДНК. Интересно, что слово «хромосома» происходит от греческого слова «chrome», означающего «цвет».
Хромосомы получили такое название из-за того, что имеют особенность окрашиваться в различные тона. Структура и природа хромосом разнятся от организма к организму. Человеческие хромосомы всегда были предметом постоянного интереса исследователей, работающих в области генетики.
Широкий круг факторов, которые определяются человеческими хромосомами, аномалии, за которые они ответственны, и их сложная природа всегда привлекали внимание многих ученых.
Интересные факты о человеческих хромосомах
Обратите внимание
В человеческих клетках содержится 23 пары ядерных хромосом. Хромосомы состоят из молекул ДНК, которые содержат гены. Хромосомная молекула ДНК содержит три нуклеотидных последовательности, требующихся для репликации. При окрашивании хромосом становится очевидной полосчатая структура митотических хромосом. Каждая полоска содержит многочисленные нуклеотидные пары ДНК.
Человек – это биологический вид, размножающийся половым путем и имеющий диплоидные соматические клетки, содержащие два набора хромосом. Один набор наследуется от матери, тогда как другой – от отца. Репродуктивные клети, в отличие от клеток тела, имеют один набор хромосом.
Кроссинговер (перекрёст) между хромосомами приводит к созданию новых хромосом. Новые хромосомы не наследуются от кого-то одного из родителей. Это служит причиной того факта, что не у всех у нас проявляются черты, получаемые нами непосредственно от одного из наших родителей.
Аутосомным хромосомам присвоены номера от 1 до 22 в порядке убывания по мере уменьшения их размера. У каждого человека имеется два набора из 22-х хромосом, X-хромосома от матери и X- или Y-хромосома от отца.
Аномалия в содержимом хромосом клетки может вызывать у людей определенные генетические нарушения. Хромосомные аномалии у людей часто оказываются ответственными за появление генетических заболеваний у их детей. Те у кого, имеются хромосомные аномалии, зачастую являются только носителями заболевания, тогда как у их детей это заболевание проявляется.
Хромосомные аберрации (структурные изменения хромосом) бывают вызваны различными факторами, а именно делецией или дупликацией части хромосомы, инверсией, представляющей собой изменение направления хромосомы на противоположное, или транслокацией, при которой происходит отрыв части хромосомы и присоединение ее к другой хромосоме.
Лишняя копия хромосомы 21 ответственна за очень хорошо известное генетическое заболевание под названием синдром Дауна.
Трисомия хромосомы 18 приводит к синдрому Эдвардса, который может вызывать смерть в младенческом возрасте.
Важно
Делеция части пятой хромосомы приводит к генетическому нарушению известному как синдром кошачьего крика. У людей, пораженных этим заболеванием, зачастую наблюдается задержка в умственном развитии, а их плач в детском возрасте напоминает кошачий крик.
Нарушения, обусловленные аномалиями половых хромосом, включают синдром Тернера, при котором женские половые признаки присутствуют, но характеризуются недоразвитостью, а также синдром XXX у девочек и синдром XXY у мальчиков, которые вызывают дислексию у пораженных ими индивидуумов.
Впервые хромосомы были обнаружены в клетках растений. Монография Ван Бенедена, посвященная оплодотворенным яйцам аскарид привела к дальнейшим исследованиям. Позже Август Вайсман показал, что зародышевая линия отличается от сомы, и обнаружил, что клеточные ядра содержат наследственный материал. Он также предположил, что фертилизация приводит к формированию новой комбинации хромосом.
Эти открытия стали краеугольными камнями в области генетики. Исследователи уже накопили достаточно значительное количество знаний о человеческих хромосомах и генах, однако многое еще только предстоит обнаружить.
Строение хромосом. Особенности строения, химического состава хромосом и их значение
Хромосомы ( от греч. Хромаmoc - окрашенный, сома - тельце ) - структуры ядра, которые являются материальными носителями наследственной информации. Эти органеллы ядра образуются в результате уплотнения и спирализации хроматина и становятся заметными при делении клетки. На стадии метафазы хромосомы выстраиваются на экваторе клетки, образуя метафазную пластинку. Состоят хромосомы с ДНК, РНК, ядерных белков и ферментов, необходимых для их удвоение или синтеза иРНК.
Количество хромосом в клетках организмов разных видов различна и не зависит от высоты организации, а также не всегда указывает на филогенетическую родство.
Количество хромосом у некоторых видов
. В строении метафазной хромосомы выделяют хроматиды, первичную перетяжку, плечи, вторичную перетяжку, спутники, ядрышковые организаторы, теломеры и др. Каждая такая хромосома состоит из двух продольных частей - хроматид. Первичная перетяжка (центромера) - наиболее спирализована часть хромосомы, разделяет ее на два плеча. На ней располагаются специальные белки (кинетохора), к которым при распределении генетического материала прикрепляются нити веретена деления. Некоторые хромосомы имеют вторичные перетяжки, часто отделяют участки хромосом, названные спутниками. Такие хромосомы в ядрах клеток могут приближаться друг к другу и образовывать ядрышковые организаторы, содержащие гены рРНК. Концы плеч получили название теломеров. Это генетически неактивные спирализовани участки, препятствующие соединению хромосом между собой или с их фрагментами.
Разновидности . Хромосомы отличаются размерами, формой, расположением перетяжек, степенью спирализации и тому подобное. По размеру и форме хромосомы можно сгруппировать парами, и эти парные хромосомы называют го-
Организация метафазной хромосомы
1- центромерных участок хромосомы; 2 - теломерные участок; 3 - дочерние хроматиды; 4 - гетеро- хроматин; 5-эухроматин; 6 - малое плечо, 7 - большое плечо.
мологичнимы, а хромосомы разных пар будут друг относительно друга негомологические. Расположение перетяжек также позволяет разделить хромосомы на группы. Если перетяжка расположена посередине, а плечи имеют одинаковые размеры, то хромосомы называют ривноплечовимы, если же размеры плеч существенно отличные - неривноплечовимы. Хромосомы могут находиться в двух состояниях: в спираль изованому ( митоза хромосомы ) и деспирализованому ( интерфазного хромосомы ). При сравнении хромосомных наборов мужских и женских особей одного вида наблюдается различие в одной паре хромосом. Эта пара получила название половых хромосом, или гетерохромосом. Остальные пары гомологичных хромосом, одинаковых у обоих полов, имеют общее название аутосомы. Для выяснения работы наследственного аппарата необходимо изучать хромосомы не только во время митоза, но и на стадии интерфазы. В некоторых насекомых и других организмов интерфазного хромосомы гораздо толще и их хорошо видно в световой микроскоп. Политеннихромосомы - хромосомы, которые представляют собой пучок многочисленных (более 1000) растянутых в длину хроматид. Образуются эти хромосомы в результате многократной репликации и нерасхождения дочерних хромосом. Во время эксперимента по специальной окраской в них было обнаружено чередование светлых (деконденсовани участка) и темных (конденсированные участки) полос. Количество, размеры и расположение этих полос являются специфическими для вида. Бывают политенные хромосомы у некоторых насекомых, в эндосперме семян, эмбриональных тканях растений и тому подобное. Изучают политенные хромосомы для: а) выяснение работы генов, которые нужны в данный момент клетке (светлые развернутые полосы ДНК - пуфы - доступны для транскрипции) б) построения генетических карт; в) выявление хромосомных перестроек; г) выявление видовой принадлежности организмов и др.
Виды хромосом. Строение хромосом. Виды хромосом. Гетеро- и эухроматин
Хромосомы - органоиды клеточного ядра, совокупность которых определяет основные наследственные свойства клеток и организмов. Полный набор хромосом в клетке, характерный для данного организма, называется кариотипом. В любой клетке тела большинства животных и растений каждая хромосома представлена дважды: одна из них получена от отца, другая - от матери при слиянии ядер половых клеток в процессе оплодотворения. Такие хромосомы называются гомологичными, набор гомологичных хромосом - диплоидным. В хромосомном наборе клеток раздельнополых организмов присутствует пара (или несколько пар) половых хромосом, как правило, различающихся у разных полов по морфологическим признакам; остальные хромосомы называются аутосомами. У млекопитающих в половых хромосомах локализованы гены, определяющие пол организма.
Первоначально хромосомы были описаны как интенсивно окрашивающиеся основными красителями плотные тельца (немецкий учёный В. Вальдейер, 1888). Однако оказалось, что внешний вид хромосом существенно меняется на разных стадиях клеточного цикла, и как компактные образования с характерной морфологией хромосомы четко различимы в световом микроскопе лишь в период клеточного деления - в метафазе митоза и мейоза. Основу хромосом на всех стадиях клеточного цикла составляют хромонемы - нитевидные структуры, которые во время деления клетки плотно закручены, обусловливая спирализацию хромосом, а в неделящейся клетке раскручены (деспирализованы). При завершении деления клетки разошедшиеся к её полюсам хромосомы разрыхляются и окружаются ядерной мембраной. В период между двумя делениями клетки (эта стадия клеточного цикла называется интерфазой) деспирализация хромосом продолжается и они становятся малодоступными для наблюдения в световой микроскоп. Морфология хромосом эукариот существенно отличается от таковой у прокариот и вирусов. Прокариоты (доядерные) и вирусы содержат обычно одну линейную или кольцевую хромосому, которая не имеет надмолекулярной укладки и не отделена от цитоплазмы ядерной оболочкой. Понятие хромосома к генетическому аппарату прокариот применимо лишь условно, т. к. оно сформировалось при изучении хромосом эукариот и подразумевает наличие в них не только сложного комплекса биополимеров (нуклеиновых кислот и белков), но и специфической надмолекулярной структуры. Изменения внешнего вида хромосом в клеточном и жизненном циклах обусловлены особенностями функционирования хромосом. Общий же принцип их организации, индивидуальность и непрерывность в ряду клеточных поколений и организмов сохраняются неизменными. Доказательства тому получены при биохимическом, цитологическом и генетическом исследованиях хромосом разных организмов. Они легли в основу хромосомной теории наследственности.
Структура хромосом
В ядре каждой соматической клетки организма человека содержится 46 хромосом. Набор хромосом каждого индивидуума, как нормальный, так и патологический, называется кариотипом. Из 46 хромосом, составляющих хромосомный набор человека, 44 или 22 пары представляют аутосомные хромосомы, последняя пара — половые хромосомы. У женщин конституция половых хромосом в норме представлена двумя хромосомами X, а у мужчин — хромосомами X и У. Во всех парах хромосом, как аутосомных, так и половых, одна из хромосом получена от отца, а вторая — от матери. Хромосомы одной пары называются гомологами, или гомологичными хромосомами. В половых клетках (сперматозоидах и яйцеклетках) содержится гаплоидный набор хромосом, т. е. 23 хромосомы. Сперматозоиды делятся на два типа, в зависимости от того, содержат они хромосому X или Y. Все яйцеклетки в норме содержат только хромосому X.
Хромосомы хорошо видны после специальной окраски во время деления клеток, когда хромосомы максимально спирализованы. При этом в каждой хромосоме выявляется перетяжка, которая называется центромерой. Центромера делит хромосому на короткое плечо (обозначается буквой «р») и длинное плечо (обозначается буквой «q»). Центромера определяет движение хромосомы во время клеточного деления. По положению центромеры хромосомы классифицируют на несколько групп. Если центромера располагается посредине хромосомы, то такая хромосома называется метацентрической, если центромера располагается ближе к одному из концов хромосомы, то ее называют акроцентрической. Некоторые акроцентрические хромосомы имеют так называемые спутники, которые в неделящейся клетке формируют ядрышки. Ядрышки содержат многочисленные копии рРН К. Кроме того, различают субметацентрические хромосомы, когда центромера расположена не посредине хромосомы, а несколько сдвинута к одному из концов, но не столь значительно, как в акроцентрических хромосомах.