Что такое хромосома. Значение слова «хромосома»
Что такое хромосома. Значение слова «хромосома»
- Хромосо́мы (др.-греч. χρῶμα — цвет и σῶμα — тело) — нуклеопротеидные структуры в ядре эукариотической клетки, в которых сосредоточена бо́льшая часть наследственной информации и которые предназначены для её хранения, реализации и передачи. Хромосомы чётко различимы в световом микроскопе только в период митотического или мейотического деления клетки. Набор всех хромосом клетки, называемый кариотипом, является видоспецифичным признаком, для которого характерен относительно низкий уровень индивидуальной изменчивости.
Хромосома эукариот образуется из единственной и чрезвычайно длинной молекулы ДНК, которая содержит линейную группу множества генов. Необходимыми функциональными элементами хромосомы эукариот являются центромера, теломеры и точки инициации репликации. Точки начала репликации (сайты инициации) и теломеры, находящиеся на концах хромосом, позволяют молекуле ДНК эффективно реплицироваться, тогда как в центромерах сестринские молекулы ДНК прикрепляются к митотическому веретену деления, что обеспечивает их точное расхождение по дочерним клеткам в митозе.
Исходно термин был предложен для обозначения структур, выявляемых в эукариотических клетках, но в последние десятилетия всё чаще говорят о бактериальных или вирусных хромосомах. Поэтому, по мнению Д. Е. Корякова и И. Ф. Жимулёва, более широким определением является определение хромосомы как структуры, которая содержит нуклеиновую кислоту и функция которой состоит в хранении, реализации и передаче наследственной информации. Хромосомы эукариот — это ДНК-содержащие структуры в ядре, митохондриях и пластидах. Хромосомы прокариот — это ДНК-содержащие структуры в клетке без ядра. Хромосомы вирусов — это молекула ДНК или РНК в составе капсида.
Хромосома строение. Лекция . Ядро. Хромосомы
Строение и функции ядра
Как правило, эукариотическая клетка имеет одно ядро , но встречаются двуядерные (инфузории) и многоядерные клетки (опалина). Некоторые высокоспециализированные клетки вторично утрачивают ядро (эритроциты млекопитающих, ситовидные трубки покрытосеменных).
Форма ядра — сферическая, эллипсовидная, реже лопастная, бобовидная и др. Диаметр ядра — обычно от 3 до 10 мкм.
Строение ядра:
1 — наружная мембрана; 2 — внутренняя мембрана; 3 — поры; 4 — ядрышко; 5 — гетерохроматин; 6 — эухроматин.
Ядро отграничено от цитоплазмы двумя мембранами (каждая из них имеет типичное строение). Между мембранами — узкая щель, заполненная полужидким веществом. В некоторых местах мембраны сливаются друг с другом, образуя поры (3), через которые происходит обмен веществ между ядром и цитоплазмой. Наружная ядерная (1) мембрана со стороны, обращенной в цитоплазму, покрыта рибосомами, придающими ей шероховатость, внутренняя (2) мембрана гладкая. Ядерные мембраны являются частью мембранной системы клетки: выросты наружной ядерной мембраны соединяются с каналами эндоплазматической сети, образуя единую систему сообщающихся каналов.
Кариоплазма (ядерный сок, нуклеоплазма) — внутреннее содержимое ядра, в котором располагаются хроматин и одно или несколько ядрышек. В состав ядерного сока входят различные белки (в том числе ферменты ядра), свободные нуклеотиды.
Ядрышко (4) представляет собой округлое плотное тельце, погруженное в ядерный сок. Количество ядрышек зависит от функционального состояния ядра и варьирует от 1 до 7 и более. Ядрышки обнаруживаются только в неделящихся ядрах, во время митоза они исчезают. Ядрышко образуется на определенных участках хромосом, несущих информацию о структуре рРНК. Такие участки называются ядрышковым организатором и содержат многочисленные копии генов, кодирующих рРНК. Из рРНК и белков, поступающих из цитоплазмы, формируются субъединицы рибосом. Таким образом, ядрышко представляет собой скопление рРНК и рибосомальных субъединиц на разных этапах их формирования.
Хроматин — внутренние нуклеопротеидные структуры ядра, окрашивающиеся некоторыми красителями и отличающиеся по форме от ядрышка. Хроматин имеет вид глыбок, гранул и нитей. Химический состав хроматина: 1) ДНК (30–45%), 2) гистоновые белки (30–50%), 3) негистоновые белки (4–33%), следовательно, хроматин является дезоксирибонуклеопротеидным комплексом (ДНП). В зависимости от функционального состояния хроматина различают: гетерохроматин (5) и эухроматин (6). Эухроматин — генетически активные, гетерохроматин — генетически неактивные участки хроматина. Эухроматин при световой микроскопии не различим, слабо окрашивается и представляет собой деконденсированные (деспирализованные, раскрученные) участки хроматина. Гетерохроматин под световым микроскопом имеет вид глыбок или гранул, интенсивно окрашивается и представляет собой конденсированные (спирализованные, уплотненные) участки хроматина. Хроматин — форма существования генетического материала в интерфазных клетках. Во время деления клетки (митоз, мейоз) хроматин преобразуется в хромосомы.
Акроцентрические Хромосомы. Авторизация
- Справочник
- Молекулярная генетика
- а
- Акроцентрическая хромосома
Акроцентрическая хромосома
Хромосома, у которой центромера находится вблизи одного из концов,, при этом одно из плеч хромосомы длинное, другое-короткое.
- Главная
- Статьи
- Обзоры программ
- Утилиты
- Разработки
- Справочник
- Справочник биохимических терминов
- Справочник терминов физиологии растений
- Справочник терминов физиологии человека и животных
- Справочник терминов молекулярной биологии
- Справочник терминов молекулярной генетики
- Справочник терминов основ техногенной безопасности в биологии
- Справочник структурных формул химических элементов и веществ
- Карта Кирова
- О сайте
Справочник
Меланин - Пигмент покровов и сетчатки глаз (цвет – от темно-коричневого до черного); меланин является продуктом полимеризации индол-5,6-хинона и 5,6-дигидроксииндол-2-карбоновой кислоты, которые образуются в результате окисления тирозина и триптофана. |
Хромосомы сколько. Число хромосом у разных видов
Вид | 2n |
Человек ( Homo sapiens ) | 46 |
Горилла | 48 |
Макака ( Macaca mulatta ) | 42 |
домашние животные | |
Кошка ( Felis domesticus ) | 38 |
Собака ( Canis familiaris ) | 78 |
Кролик | 44 |
Лошадь | 64 |
Корова ( Bovis domesticus ) | 120 |
Курица ( Gallus domesticus ) | 78 |
Утка | 80 |
Свинья | 40 |
Овца | 54 |
лабораторные животные | |
Плодовая мушка ( D.melanogaster ) | 8 |
Морской еж ( Strongylocentrotus purpuratus ) | 42 |
Шпорцевая лягушка ( Xenopus laevis ) | 36 |
Мышь ( Mus musculus ) | 40 |
Дрожжи ( S.cerevisiae ) | 32 |
Нематода | 22/24 |
Крыса | 42 |
Морская свинка | 16 |
позвоночные | |
Еж | 96 |
Лиса | 34 |
Голубь | 16 |
Карп | 104 |
Минога | 174 |
Лягушка ( Rana pipiens ) | 26 |
Cазан | 104 |
растения | |
Клевер | 14 |
Тополь | 38 |
Кукуруза ( Zea mays ) | 20 |
Горох | 14 |
Береза | 84 |
Ель | 24 |
Лук ( Allium cepa ) | 16 |
Арабидопсис ( Arabidopsis thaliana ) | 10 |
Картошка ( S.tuberosum ) | 48 |
Ужовник | 48 |
лилия | 24 |
Хвощ | 216 |
Томат | 24 |
Крыжовник | 16 |
Вишня | 32 |
Рожь | 14 |
Пшеница | 42 |
Папоротник | ~1200 |
беспозвоночные | |
Миксомицеты | 14 |
Трипаносома | |
Бабочка | 380 |
Шелкопряд | 56 |
Протей ( Necturus maculosis ) | 38 |
Рак ( Cambarus clarkii ) | 200 |
Гидра | 30 |
Аскарида | 2 |
Пчела | 16 |
Муравей ( Myrmecia pilosula ) | 2 |
Виноградная улитка | 24 |
Земляной червь | 36 |
Речной рак | 116 |
Малярийный плазмодий | 2 |
Радиолярия | 1600 |
Наименьшее число хромосом : самки подвида муровьев Myrmecia pilosula имеют пару хромосом на клетку. Самцы имеют только 1 хрососому в каждой клетке.
Наибольшее число : вид папоротников Ophioglossum reticulatum имеет около 630 пар хромосом, или 1260 хромосом на клетку
Верхний предел числа х-м не зависит от количества ДНК которое в них входит: у американской амфибии Amphiuma ДНК в ~30 раз больше, чем у человека, которая помещается в 14 хромосомах. Самая маленькая хромосома амфибии больше самых крупных хромосом человека --> большое количество ДНК может не влиять на увеличение числа хромосом.
Нет верхнего предела ограничивающего количество хромосом: бабочка Lysandra nivescens n=140-141 хромосома.
Существует минимальная масса хромосомы необходимая для расхождения хромосом в митозе - критическая масса. Наличие такой массы может частично объяснить избыточность ДНК.