Сверхпроводимость это. Подтверждено: создан сверхпроводник, работающий при "Земной" температуре.
- Сверхпроводимость это. Подтверждено: создан сверхпроводник, работающий при "Земной" температуре.
- Сверхпроводимость при комнатной температуре. Получен сверхпроводник работающий при комнатной температуре
- Кто и когда открыл сверхпроводимость?
- Что называется сверхпроводимостью?
- Электролиз это. Что такое электролиз
- Эффект Мейснера. Сверхпроводники I и II рода
- Что представляют собой сверхпроводники?
- Что такое сверхпроводимость. Критическая температура
- Видео Сверхпроводимость!
- Электрический ток в вакууме
- Электрический ток в газах это. Электрический ток в газах и плазма
Сверхпроводимость это. Подтверждено: создан сверхпроводник, работающий при "Земной" температуре.
Физики обнаружили материал, который становится сверхпроводящим при температуре немногим выше, чем самая холодная температура на земле. Это открытие может ознаменовать новую эру изучения сверхпроводимости. Мир сверхпроводимости загудел. В прошлом году Михаил еремец и пара его коллег из института химии Макса планка в Майнце, Германия, сделали необычные заявление о наблюдении сверхпроводящего сероводорода при - 70 градусах по цельсию
. Это на 20 градусов выше любого другого материала, за которым остается текущий рекорд.
Результаты работы ученых начали обсуждать в прошлом декабре, когда их впервые разместили на Arxiv. На тот момент физики осторожно о своей работе высказывались. История сверхпроводимости усеяна трупами сомнительных заявлений о высокотемпературной активности, которые впоследствии оказалось невозможно воспроизвести.
С тех пор прошло довольно много времени, еремец и коллеги упорно трудились, чтобы соорудить окончательные и убедительные доказательства. Несколько недель назад их работа была опубликована в журнале Nature, тем самым поставив штамп респектабельности, необходимой в современной физике. Сверхпроводники снова в заголовках замелькали.
Антинио бьянцони и Томас ярлборг из римского международного центра материаловедения в Италии сделали обзор своей захватывающей области работы. И проделали теоретическую работу, разъясняющую труды еремца и его коллег.
Для начала немного предыстории. Сверхпроводимость - это явление нулевого электрического сопротивления, которое встречается в некоторых материалах, когда они охлаждаются ниже критической температуры.
Это явление хорошо известно в обычных сверхпроводниках, которые по сути являются жесткими решетками положительных ионов, купающихся в море электронов. Электрическое сопротивление возникает, поскольку электроны врезаются в эти решетки и теряют энергию по мере движения через нее.
Однако при низких температурах электроны могут соединяться друг с другом с образованием куперовских пар. В то же время решетка становится достаточно жесткой, чтобы позволить когерентное движение волн, называемых фононами.
Сверхпроводимость рождается, когда куперовские пары и фононы путешествуют вместе через материал, и волны существенно расчищают путь для электронных пар. Это наступает, когда вибрации решетки - ее температура - становится достаточно сильной, чтобы разорвать куперовские пары. Это критическая температура.
До недавнего момента самой высокой критической температурой такого рода была отметка в - 230 градусов по цельсию (40 по Кельвину.
Существует три основных характеристики, которые ищут ученые для подтверждения сверхпроводимости материала. Первая - внезапное падение электрического сопротивления, когда материал охлаждается ниже критической температуры. Вторая - вытеснение магнитного поля из материала, эффект, известный как эффект мейснера.
Третья - изменение критической температуры, когда атомы в материале заменяются изотопами. Происходит это потому, что разница в массе изотопов приводит к тому, что решетка вибрирует по-разному, что меняет критическую температуру.
Но есть еще один вид сверхпроводимости, гораздо менее понятный. Он включает определенные керамические вещества, обнаруженные в 1980-х годах, которые становятся сверхпроводящими при температурах до - 110 градусов по цельсию. Никто на самом деле не понимает, как они работают, но большая часть исследований в сообществе сверхпроводимости сосредоточена на этих экзотических материалах.
Еремец и его коллеги, скорее всего, изменили расстановку позиций. Возможно, самым большим сюрпризом в их прорыве стало то, что он не включает "Высокотемпературный" сверхпроводник. Он включает обычный сероводород, за которым никогда не замечали, чтобы он был сверхпроводником при температурах выше 40 градусов по Кельвину.
Еремец и его коллеги достигли своей цели, сжав этот материал под давлением, которое существует только в центре земли. В то же время им удалось обнаружить доказательства всех важнейших характеристик сверхпроводимости.
А пока их эксперименты продолжаются, теоретики ломают голову, пытаясь это объяснить. Многие физики считали, что была некая теоретическая причина того, почему традиционные сверхпроводники не могут работать при температуре выше 40 градусов по Кельвину. Но оказалось, что в теории нет ничего, что препятствует работе сверхпроводников при более высоких температурах.
В 1960-х годах британский физик Нил эшкрофт предсказал, что водород должен быть в состоянии сверхпроводить при высоких температурах и давлениях, возможно, даже при комнатной температуре. Его идея заключалась в том, что водород настолько легкий, что должен образовывать решетку, способную вибрировать при очень высоких частотах и, следовательно, становиться серхпроводником при высоких температурах и давлениях.
Еремец и его коллеги, похоже, подтвердили эту идею или по крайней мере что-то вроде этого. Есть множество теоретических складок, которые нужно убрать, прежде чем физики смогут сказать, что имеют правильное понимание происходящего. Теоретическая работа продолжается.
Теперь гонка заключается в поиске других сверхпроводников, которые будут работать при еще более высоких температурах. Одним из перспективных кандидатов является H3S (а не H2S, над которым изначально работал еремец.
И, конечно, физики начинают думать над применениями. Использовать такие материалы весьма непросто, и не только потому, что они являются сверхпроводниками при высоких давлениях.
Но фантазировать не мешает ничего. "Это Открытие Имеет Значение не Только для Материаловедения и Конденсированной Материи, но и в Других Сферах, от Квантовых Вычислений до Квантовой Физики Живой Материи", - говорят бьянцони и ярлборг. Они также выдвигают интересную идею, что такой сверхпроводник работает при температуре, которая на 19 градусов выше самой холодной температуры на земле.
Возможно, в ближайшие месяцы и годы мы услышим еще много интересного о сверхпроводниках.
Сверхпроводимость при комнатной температуре. Получен сверхпроводник работающий при комнатной температуре
Сверхпроводимость — это одно из самых загадочных, замечательных и перспективных явлений. Сверхпроводящие материалы, не имеющие электрического сопротивления, могут проводить ток практически без потерь, и это явление уже используется в практических целях в некоторых областях, к примеру, в магнитах установок ядерной томографии или ускорителей частиц. Однако, существующие сверхпроводящие материалы для того, чтобы обрести свои свойства, должны быть охлаждены до крайне низких температур. Но эксперименты, проведенные учеными в течение этого и прошлого года, привели к получению некоторых неожиданных результатов, которые могут изменить положение, в котором находятся сейчас технологии использования сверхпроводников.
Международная группа ученых, возглавляемая учеными из института Структуры и динамики материи Макса Планка (Max Planck Institute for the Structure and Dynamics of Matter), работая с одним из самых перспективных материалов — высокотемпературным сверхпроводником окисью меди-бария-иттрия (YBa2Cu3O6+x, YBCO), обнаружила, что воздействие на этот керамический материал импульсов света инфракрасного лазера заставляет некоторые атомы этого материала кратковременно изменить свое положение в кристаллической решетке, увеличивая проявление эффекта сверхпроводимости.
Кристаллы соединения YBCO имеют весьма необычную структуру. Снаружи этих кристаллов присутствует слой окиси меди, покрывающий собой промежуточные слои, в которых содержатся барий, иттрий и кислород. Эффект сверхпроводимости при облучении светом лазера возникает именно в верхних слоях окиси меди, в которых происходит интенсивное формирование пар электронов, так называемых пар Купера. Эти пары могут перемещаться между слоями кристалла за счет эффекта туннелирования, и это указывает на квантовую природу наблюдаемых эффектов. И в обычных условиях кристаллы YBCO становятся сверхпроводниками только при температуре, ниже критической точки этого материала.
В экспериментах, проведенных в 2013 году, ученые обнаружили, что освещение кристалла YBCO импульсами мощного инфракрасного лазера заставляет материал кратковременно становиться сверхпроводником и при комнатной температуре. Очевидно, что лазерный свет оказывает влияние на сцепление между слоями материала, хотя механизм этого влияния остается пока еще не до конца ясным. И для выяснения всех подробностей происходящего ученые обратились к возможностям лазера LCLS, самого мощного на сегодняшний день рентгеновского лазера.
«Мы начали «бить» по материалу импульсами инфракрасного света, который возбудил некоторые из атомов, заставив их колебаться с достаточно сильной амплитудой»
— рассказывает Роман Манковский (Roman Mankowsky), ученый-физик из института Макса Планка, — «Затем мы использовали импульс рентгеновского лазера, следующий сразу за импульсом инфракрасного лазера, для измерения точного значения смещений, произошедших в кристаллической решетке».
Полученные результаты показали, что импульс инфракрасного света не только возбудил и заставил колебаться атомы, его воздействие привело к смещению из положения в кристаллической решетке. Это сделало на очень кроткое время меньшим расстояние между слоями оксида меди и другими слоями кристалла, что в свою очередь привело к увеличению проявления эффекта квантового сцепления между ними. В результате этого кристалл становится сверхпроводником при комнатной температуре, правда это его состояние способно держаться всего несколько пикосекунд времени.
«Полученные нами результаты позволят нам внести некоторые изменения и усовершенствовать существующую теорию высокотемпературных сверхпроводников. Кроме этого, наши данные окажут неоценимую помощь ученым-материаловедам, разрабатывающим новые высокотемпературные сверхпроводящие материалы, имеющие высокое значение критической температуры» — рассказывает Роман Манковский, — «И, в конечном счете, все это, я надеюсь, приведет к осуществлению мечты о сверхпроводящем материале, работающем при комнатной температуре, который совершенно не нуждается в охлаждении. А появление такого материала, в свою очередь, сможет обеспечить массу прорывов в великом множестве других областей, использующих в своих интересах явление сверхпроводимости».
Кто и когда открыл сверхпроводимость?
В 1911 году голландский физик Х. Камерлинг-Оннес открыл явление сверхпроводимости. Он проводил измерения электрического сопротивления ртути при низких температурах.
Что называется сверхпроводимостью?
Дайте определение сверхпроводника Сверхпроводимость - явление, состоящее в том, что у некоторых металлов и сплавов происходит резкое падение до нуля удельного сопротивления вблизи определенной температуры. Эти металлы и сплавы называются сверхпроводниками.
Электролиз это. Что такое электролиз
Для того чтобы понять что такое электролиз, необходимо объединить вместе знания о физических и химических процессах. Как следует из самого термина, электролиз происходит при участии электрического тока в качестве организующего и стимулирующего начала.
Определение электролиза
Любой раствор наполнен частицами, имеющими положительный или отрицательный заряд. Это состояние считается неустойчивым, поскольку противоположно заряженные частицы притягиваются. В результате этого может формироваться нейтрально заряженная частица, то есть молекула нового вещества.
Если поток положительно и отрицательно заряженных частиц сделать организованным, то можно постоянно получать нужные вещества или состояния предметов. Организовать ионы можно только с помощью электричества, то есть создания разницы потенциалов, когда в растворе образуются мощные источники положительно и отрицательно заряженных ионов.
Электролиз — это стимулирование химических процессов с помощью постоянного электрического тока, который заставляет ионы перемещаться в нужном направлении и концентрироваться в одном месте. Так, с помощью внешнего воздействия человек контролирует беспорядочные процессы перемещения частиц в растворе.
В чём заключается процесс
Сам анод может не участвовать в процессе химической трансформации, являясь только источником тока
Для организации процесса перемещения ионов в растворе нужно только два электрода и источник тока. Положительно заряженный электрод, называемый анодом, способствует окислению анионов, то есть отрицательно заряженных частиц, а также нейтральных молекул.
Катод, то есть отрицательно заряженный электрод, притягивает к себе положительно заряженные ионы и нейтральные молекулы.
Особенности процессов, происходящих на катоде, заключаются в том, что здесь восстанавливаются обычно сильные окислители.
Таким образом, с помощью двух пластинок с разницей потенциалов, помещённых в электролит, можно получать новые вещества, менять состояние электродов и раствора.
Для чего он нужен
Электролиз широко применяется для осуществления следующих процессов:
- Получение веществ в чистом состоянии. Этот процесс используется для того, чтобы обработать горные породы и получить чистые вещества. Так образуются алюминий, двуокись марганца, водород, перекись водорода.
- Очистка сточных вод. В результате помещения в такие растворы электролитов происходит не только обеззараживание воды, но и образование взвесей, которые выпадают в осадок.
- Нанесение тонких покрытий. Под воздействием тока ионы металла осаждаются на предмете, формируя тонкую декоративную или защитную плёнку.
Этот список на самом деле гораздо обширней, поскольку с помощью разницы потенциалов можно с минимальными затратами добиваться значительного эффекта для разных целей.
Эффект Мейснера. Сверхпроводники I и II рода
Чистые вещества, у которых наблюдается явление сверхпроводимости, немногочисленны. Чаще сверхпроводимость бывает у сплавов. У чистых веществ имеет место полный эффект Мейснера, а у сплавов не происходит полного выталкивания магнитного поля из объёма (частичный эффект Мейснера). Вещества, проявляющие полный эффект Мейснера, называются сверхпроводниками первого рода, а частичный — сверхпроводниками второго рода. Однако стоит отметить, что в низких магнитных полях полным эффектом Мейснера обладают все типы сверхпроводников.
У сверхпроводников второго рода в объёме имеются круговые токи, создающие магнитное поле, которое, однако, заполняет не весь объём, а распределено в нём в виде отдельных нитей вихрей Абрикосова . Что же касается сопротивления, оно равно нулю, как и в сверхпроводниках первого рода, хотя движение вихрей под действием текущего тока создаёт эффективное сопротивление в виде диссипативных потерь на передвижение магнитного потока внутри сверхпроводника, чего избегают вводом в структуру сверхпроводника дефектов — центров пиннинга , за которые вихри «цепляются».
Что представляют собой сверхпроводники?
Сверхпроводник — материал, электрическое сопротивление которого при понижении температуры до некоторой величины Tc становится равным нулю (сверхпроводимость). При этом говорят, что материал приобретает «сверхпроводящие свойства» или переходит в «сверхпроводящее состояние».
Что такое сверхпроводимость. Критическая температура
Оказалось, что не только ртуть обладает сверхпроводимостью при температурах, близких к абсолютному нулю. Такое свойство открыли у свинца, олова, таллия, урана и других металлов. Сверхпроводимость проявляется скачкообразно, когда вещество охлаждается до определённой температуры. Температуру Тс , при которой этот скачок происходит, называют критической. У каждого элемента, обладающего сверхпроводимостью, она своя. Например, ниобий переходит в состояние сверхпроводимости при 9 К, а вольфрам при 0,012 К.
Сверхпроводимостью обладают не только чистые металлы, но и некоторые сплавы. Например, сплав ртути с золотом и оловом. Существуют даже сверхпроводящие сплавы, у которых один из элементов, входящих в его состав, может и не быть сверхпроводником.
Если кольцо из сверхпроводника охладить до критической температуры и возбудить в нём электрический ток, то он будет течь даже после того, как уберут источник тока, и до тех пор, пока в кольце будет поддерживаться температура ниже критической. Но так происходит только в электрическом поле постоянного электрического тока. В переменном электрическом поле сопротивление сверхпроводника увеличивается, если увеличивается частота переменного тока.
В 1983 - 1986 г.г. были созданы новые сверхпроводники. Это сверхпроводящие керамики, сверхпроводники на основе железа и др. Сверхпроводимость в них наступала при температурах, значительно превышающих температуру абсолютного нуля. В 1993 г. было открыто вещество, критическая температура которого равна 135 К.
Эффект Мейснера
В 1933 г. немецкий физик Вальтер Фриц Мейснер вместе с другим немецким физиком Робертом Оксенфельдом открыл ещё одно удивительное и важное свойство сверхпроводников - выталкивание магнитного поля из своего объёма . Это явление было названо эффектом Мейснера .
Вальтер Фриц Мейснер
Эффект Мейснера наглядно демонстрирует опыт, поставленный в 1945 г. российским физиком Владимиром Константиновичем Аркадьевым.
В этом эксперименте постоянный магнит, поднесённый к чашечке, сделанной из сверхпроводящего металла, висит в пространстве над ней. Низкая температура чашечки поддерживается за счёт того, что её ножки погружены в жидкий гелий. Но почему же магнит не притягивается к чашечке? Дело в том, что незатухающий ток внутри сверхпроводника создаёт магнитное поле, направление которого противоположно направлению внешнего магнитного поля, создаваемого магнитом. Это поле уравновешивает и отталкивает внешнее поле, благодаря чему магнит будто парит в пространстве. Это явление называется магнитной левитацией.
Если поместить сверхпроводник в магнитное поле и напряжённость этого поля увеличивать, то при определённом значении напряжённости, равной Нс , сверхпроводимость исчезает. Такое магнитное поле называется критическим полем. При напряжённости выше Нс сверхпроводник становится обычным проводником. Чем ниже температура сверхпроводника, тем большей должна быть напряжённость поля, способного разрушить сверхпроводимость.
В чистых сверхпроводников, состоящих из одного вещества, магнитное поле будет выталкиваться до тех пор, пока напряжённость магнитного поля не достигнет значения Нс . Такие сверхпроводники называются сверхпроводниками I рода .
А для сверхпроводящих сплавов таких значений два: Нс1 и Нс2 . Когда напряжённость внешнего магнитного поля достигнет значения Нс1 , это поле уже начнёт проникать внутрь сверхпроводника. Ноегоэлектрическое сопротивление всё ещё остаётся нулевым, и явление сверхпроводимости наблюдается. А когда напряжённость станет равна Нс2 , сверхпроводимость исчезнет совсем. Такие сверхпроводники называются сверхпроводниками II рода .
Видео Сверхпроводимость!
Электрический ток в вакууме
Важнейшими приборами в электронике первой половины ХХ в. были электронные лампы, в которых использовался электрический ток в вакууме. Однако им на смену пришли полупроводниковые приборы. Но и сегодня ток в вакууме используется в электронно-лучевых трубках, при вакуумном плавлении и сварке, в том числе в космосе, и во многих других установках. Это и определяет важность изучения электрического тока в вакууме.
Вакуум (от лат. vacuum - пустота) - состояние газа при давлении, меньшем атмосферного. Это понятие применяется к газу в замкнутом сосуде или в сосуде, из которого откачивают газ, а часто и к газу в свободном пространстве, например к космосу. Физической характеристикой вакуума есть соотношение между длиной свободного пробега молекул и размером сосуда, между электродами прибора и т.д
Когда речь идет о вакууме, то почему-то считают, что это совсем пустое пространство. На самом же деле это не так. Если из какого-нибудь сосуда откачивать воздух то количество молекул в нем с течением времени будет уменьшаться, хотя все молекулы из сосуда удалить невозможно. Так когда же можно считать, что в сосуде создан вакуум?
Молекулы воздуха, двигаясь хаотически, часто сталкиваются между собой и со стенками сосуда. Между такими столкновениями молекулы пролетают определенные расстояния, которые называются длиной свободного пробега молекул. Понятно, что при откачивании воздуха концентрация молекул (их количество в единице объема) уменьшается, а длина свободного пробега - увеличивается. И вот наступает момент, когда длина свободного пробега становится равной размерам сосуда: молекула движется от стенки к стенке сосуда, практически не встречаясь с другими молекулами. Вот тогда-то и считают, что в сосуде создан вакуум, хотя в нем еще может быть много молекул. Понятно, что в меньших по размерам сосудах вакуум создается при больших давлениях газа в них, чем в больших сосудах. Если продолжать откачивание воздуха из сосуда, то говорят, что в нем создается более глубокий вакуум. При глубоком вакууме молекула может много раз пролететь от стенки к стенке, прежде чем встретится с другой молекулой. Откачать все молекулы из сосуда практически невозможно. Где берутся свободные носители зарядов в вакууме? Если в сосуде создан вакуум, то в нем все же есть немало молекул, некоторые из них могут быть и ионизированы. Но заряженных частичек в таком сосуде для выявления заметного тока мало. Как же получить в вакууме достаточное количество свободных носителей заряда? Если нагреть проводник, пропуская по нему электрический ток или другим способом , то часть свободных электронов в металле будет иметь достаточную энергию, чтобы выйти из металла (выполнить работу выхода).
Электрический ток в газах это. Электрический ток в газах и плазма
Полностью или частично ионизированный газ называется плазмой и считается четвертым агрегатным состоянием вещества. В целом плазма электрически нейтральна, так как суммарный заряд составляющих ее частиц равен нулю. Это отличает ее от других систем заряженных частиц, таких как, например, электронные пучки.
В природных условиях плазма образуется, как правило, при высоких температурах вследствие столкновения атомов газа на больших скоростях. Подавляющая часть барионной материи во Вселенной пребывает в состоянии плазмы. Это звезды, часть межзвездного вещества, межгалактический газ. Земная ионосфера также представляет собой разреженную слабо ионизированную плазму.
Степень ионизации является важной характеристикой плазмы – от нее зависят проводящие свойства. Степень ионизации определяется как отношение количества ионизированных атомов к общему количеству атомов в единице объема. Чем сильнее ионизирована плазма, тем выше ее электропроводность. Кроме того, ей присуща высокая подвижность.
Мы видим, таким образом, что газы, проводящие электрический ток, в пределах канала разряда являют собой не что иное, как плазму. Так, тлеющий и коронный разряды – это примеры холодной плазмы; искровой канал молнии или электрическая дуга – примеры горячей, практически полностью ионизованной плазмы.